thermometer with hygrometer

                                      

 

A thermometer is a device that measures temperature or a temperature gradient. A thermometer has two important elements:  a temperature sensor (e.g. the bulb of a mercury-in-glass thermometer or the pyrometric sensor in an infrared thermometer) in which some change occurs with a change in temperature; and some means of converting this change into a numerical value (e.g. the visible scale that is marked on a mercury-in-glass thermometer or the digital readout on an infrared model). Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.

Some of the principles of the thermometer were known to Greek philosophers of two thousand years ago. The modern thermometer gradually evolved from the thermoscope with the addition of a scale in the early 17th century and standardisation through the 17th and 18th centuries.

A hygrometer is an instrument used to measure the amount of humidity and water vapour in the atmosphere, in soil, or in confined spaces. Humidity measurement instruments usually rely on measurements of some other quantity such as temperature, pressure, mass, a mechanical or electrical change in a substance as moisture is absorbed. By calibration and calculation, these measured quantities can lead to a measurement of humidity. Modern electronic devices use temperature of condensation (called the dew point), or changes in electrical capacitance or resistance to measure humidity differences. The first crude hygrometer was invented by the Italian Renaissance polymath Leonardo da Vinci in 1480 and a more modern version was created by Swiss polymath Johann Heinrich Lambert in 1755. Later in the year 1783, Swiss physicist and Geologist, Horace Bénédict de Saussure invented the first hygrometer using human hair to measure humidity.

The maximum amount of water vapor that can be held in a given volume of air (saturation) varies greatly by temperature; cold air can hold less mass of water per unit volume than hot air. Temperature can change humidity. Most instruments respond to (or are calibrated to read) relative humidity (RH), which is the amount of water relative to the maximum at a particular temperature expressed as percent.